Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138768

RESUMO

To make the sound absorber easy to fabricate and convenient for practical application, a modular composable acoustic metamaterial with multiple nonunique chambers (MCAM-MNCs) was proposed and investigated, which was divided into a front panel with the same perforated apertures and a rear chamber with a nonunique grouped cavity. Through the acoustic finite element simulation, the parametric studies of the diameter of aperture d, depth of chamber T0, and thickness of panel t0 were conducted, which could tune the sound absorption performances of MCAM-MNCs-1 and MCAM-MNCs-2 for the expected noise reduction effect. The effective sound absorption band of MCAM-MNCs-1 was 556 Hz (773-1329 Hz), 456 Hz (646-1102 Hz), and 387 Hz (564-951 Hz) for T = 30 mm, T = 40 mm, and T = 50 mm, respectively, and the corresponding average sound absorption coefficient was 0.8696, 0.8854, and 0.8916, accordingly, which exhibited excellent noise attenuation performance. The sound absorption mechanism of MCAM-MNCs was investigated by the distributions of the total sound energy density (TSED). The components used to assemble the MCAM-MNCs sample were fabricated by additive manufacturing, and its actual sound absorption coefficients were tested according to the transfer matrix method, which demonstrated its feasibility and promoted its actual application.

2.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569991

RESUMO

The current work reveals the influence of loading parameters on the crack growth behavior of a Zr/Ti/steel composite plate with a crack normal to the interface by using an experiment and the finite element method. The Chaboche model was first used to study cyclic plastic evolution in composite materials. The results reveal that an increase in Fmax, Fm, and Fa can promote da/dN; meanwhile, an increase in R will reduce da/dN. The plastic strain accumulation results indicate that Fm mainly contributes to the tensile strain and compressive stress after the first cycle. Additionally, Fa increases the stress range and compression stress and greatly improves the plastic strain accumulation degree in subsequent loading cycles. The Fmax can significantly increase the stress amplitude and plastic strain accumulation level. When R increases, the plastic strain accumulation increases a little, but the stress amplitude and compression stress decrease greatly. Furthermore, it is also found that the elastic-plastic mismatch also affects the plastic evolution, that is, strengthening or weakening the effect of the loading parameters.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37632675

RESUMO

The application of probiotics, in aquaculture, is becoming increasingly widespread and have had positive application effects. However, reports of loach-derived probiotics are quite limited. In this study, two representative strains of lactic acid bacteria with excellent traits, namely, Weissella confusa N17 and Lactobacillus saniviri N19, were screened from the intestine of healthy loaches. W. confusa N17 and L. saniviri N19 could inhibit different common various pathogenic bacteria, especially Aeromonas spp., and were sensitive to the most common antibiotics. The survival rate of the two strains exceeded 50% after 4 h of incubation in 10% loach bile. Moreover, the two strains showed significant tolerance to trypsin. Their autoaggregation capacity and hydrophobicity were greater than 30%. In addition, the aggregation ability of both strains was higher than 30% for both A. veronii TH0426 and A. hydrophila TPS. The two strains had a high biofilm-forming ability and strong adhesion to epithelioma papulosum cyprini (EPC) cells. Scanning electron microscopy results showed that the culture supernatants of the two strains had a significantly destructive effect on A. veronii TH0426 and A. hydrophila TPS. Overall, the traits of W. confusa N17 were better than those of L. saniviri N19. Genome sequencing and analysis demonstrated a lack of virulence factor-related or drug resistance-related genes in genome N17. The diet supplemented with the W. confusa N17 strain significantly improved the resistance of loaches to A. veronii infection, and the protection rate reached 57.1%. Therefore, W. confusa N17 exhibits promising for further applications in loach aquaculture.

4.
PLoS One ; 18(7): e0288236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428776

RESUMO

The widespread use of garlic planters has been hampered by the lack of comprehensive applicability evaluation criteria, as their functional and structural designs are sometimes subpar and their purchase and use are not always financially advantageous. In order to close this gap in the applicability evaluation system for garlic planters, a three-level index system based on Technical indicators, Economic indicators, and Working condition indicators was proposed in the current study. A fuzzy comprehensive evaluation method was then applied to achieve the evaluation with the help of an analytical hierarchy process and validity test. By providing basic descriptions, physical test results and specific calculation results to the consulted ten experts and collecting the scores for the 3rd level indicators, the first-generation garlic planter was analyzed for the practical application of the Pizhou-white garlic planting area based on the established applicability evaluation system. The evaluated score of 74.47 was towards the bottom of the "good" range. The findings also suggest that enhancing operational safety, implementing plant spacing and planting depth adjustments, enhancing ease of operation, and to some extent lowering capital cost will improve functional performance and economic performance. The upgraded machine was subsequently created using the optimization guidelines. Its applicability score was 77.52, representing a 4.1% gain over the original computer. It has reached the midpoint of the "good" range and has achieved the optimization goal. The proposed applicability evaluation system can generally draw unbiased conclusions and provide scientific evaluation methods for the promotion of garlic planters in specific areas, benefiting not only the design and improvement of garlic planters but also the purchasing and application of them. However, further indicator refinement and a more thorough evaluation method appear necessary before the evaluation system is made more widely available.


Assuntos
Agricultura , Alho , Agricultura/instrumentação , Agricultura/métodos
5.
Fish Shellfish Immunol ; 139: 108934, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37419434

RESUMO

Aeromonas veronii is a zoonotic agent capable of infecting fish and mammals, including humans, posing a serious threat to the development of aquaculture and public health safety. Currently, few effective vaccines are available through convenient routes against A. veronii infection. Herein, we developed vaccine candidates by inserting MSH type VI pili B (MshB) from A. veronii as an antigen and cholera toxin B subunit (CTB) as a molecular adjuvant into Lactobacillus casei and evaluated their immunological effect as vaccines in a crucian carp (Carassius auratus) model. The results suggested that recombinant L. casei Lc-pPG-MshB and Lc-pPG-MshB-CTB can be stably inherited for more than 50 generations. Oral administration of recombinant L. casei vaccine candidates stimulated the production of high levels of serum-specific immunoglobulin M (IgM) and increased the activity of acid phosphatase (ACP), alkaline phosphatase (AKP) superoxide dismutase (SOD), lysozyme (LZM), complement 3 (C3) and C4 in crucian carp compared to the control group (Lc-pPG612 group and PBS group) without significant changes. Moreover, the expression levels of interleukin-10 (IL-10), interleukin-1ß (IL-1ß), tumour necrosis factor-α (TNF-α) and transforming growth factor-ß (TGF-ß) genes in the gills, liver, spleen, kidney and gut of crucian carp orally immunized with recombinant L. casei were significantly upregulated compared to the control groups, indicating that recombinant L. casei induced a significant cellular immune response. In addition, viable recombinant L. casei can be detected and stably colonized in the intestine tract of crucian carp. Particularly, crucian carp immunized orally with Lc-pPG-MshB and Lc-pPG-MshB-CTB exhibited higher survival rates (48% for Lc-pPG-MshB and 60% for Lc-pPG-MshB-CTB) and significantly reduced loads of A. veronii in the major immune organs after A. veronii challenge. Our findings indicated that both recombinant L. casei strains provide favorable immune protection, with Lc-pPG-MshB-CTB in particular being more effective and promising as an ideal candidate for oral vaccination.


Assuntos
Carpas , Doenças dos Peixes , Lacticaseibacillus casei , Humanos , Animais , Toxina da Cólera , Proteínas de Fímbrias , Aeromonas veronii , Vacinas Bacterianas , Vacinas Sintéticas , Doenças dos Peixes/prevenção & controle , Mamíferos
6.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175103

RESUMO

The aroma, taste, and flavour profiles of mango cultivars vary, directly influencing their marketability and consumer acceptance. In this study, we explored the effects of volatile organic compounds (VOCs) on the distinct aromas of two mango cultivars during storage using GC-IMS and HS-SPME-GC-MS combined with OPLS-DA analysis. Our findings revealed that the terpene and aldehyde contents were higher in the 'Tainong' mango cultivar, compared to the 'Hongyu' mango, while the ester content was lower. The aroma was attributed to the presence of terpinolene, 2-nonenal, delta-carene, and alpha-phellandrene in the early stages of storage, and later-between 5 and 11 days-to ethyl acetate, ethyl butyrate, and ethyl propanoate. Further analysis of characteristic VOCs using OPLS-DA demonstrated and explained the strong grassy aroma of the 'Tainong' mango, and the strong fruity and sweet aromas of the 'Hongyu' mango. Additionally, esters mainly accumulated during the later periods of storage, especially propyl butyrate, which was produced and accumulated when fruit quality deteriorated in the later storage period. Our study provides a theoretical basis for detecting mango VOCs during storage to determine the appropriate marketing time for the two mango cultivars and enables informed consumer choice.


Assuntos
Mangifera , Compostos Orgânicos Voláteis , Odorantes/análise , Paladar , Cromatografia Gasosa-Espectrometria de Massas , Percepção Gustatória , Aromatizantes , Compostos Orgânicos Voláteis/análise , Ésteres
7.
J Fish Dis ; 46(5): 487-497, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36708291

RESUMO

Aeromonas veronii is a zoonotic pathogen capable of causing sepsis and ulceration in freshwater fish. Recently, reports of numerous cases indicate a marked increase in pathogenicity. Nonetheless, little is known about the pathogenesis of A. veronii infections. In this study, an in-frame mutant of the A. veronii vipB gene was generated to investigate its biological function. Deletion of the vipB gene resulted in a significant 204.71-fold decrease in the LD50 of A. veronii against zebrafish and a 2-fold and 4-fold reduction in the toxicity to EPC cells at 1 h and 2 h of infection, respectively. The virulence-related genes of the mutant ΔvipB all showed significantly reduced expression levels compared to the wild strain. In addition, the motility of the mutant ΔvipB decreased significantly, the adhesion ability to EPC cells was 3.25-fold lower than that of the parental strain, and the oxidative stress tolerance was 2.31-fold lower than that of TH0426 strain. In contrast, the biofilm formation amount of ΔvipB strain increased by 1.65-fold at both 12 h and 24 h. Our findings suggest that the vipB gene is associated with flagella stability, virulence, and oxidative stress tolerance and plays critical roles in the pathogenesis of A. veronii infections.


Assuntos
Aeromonas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas veronii/genética , Virulência/genética , Peixe-Zebra/genética , Estresse Oxidativo , Infecções por Bactérias Gram-Negativas/patologia
8.
J Sci Food Agric ; 103(2): 705-719, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36054764

RESUMO

BACKGROUND: Accurate pesticide inline mixing uniformity (PIMU) evaluation for direct nozzle injection systems (DNIS) helps evaluate system performance and develop efficient inline mixers. Based on supervised machine learning (ML), inline mixing images and computational fluid dynamics (CFD) simulations are directly associated for realizing intelligent PIMU predictions. RESULTS: Image sets can be reduced to less than 3% of the data size at the same time as retaining 98% of information using principal component analysis (PCA). The CFD results, as referenced values for ML, were justified by mixture sampling experiments. Enhanced images for the long-mixing tube effectively trained models including generalized linear model (GLM), support vector regression (SVR), BP-neural network (NNW), and classification and regression trees (CART). By testing the re-collected images, the verification accuracy of GLM was less than 95% and it failed to recognize uniformity differences under varying working conditions, whereas NNW, CART and SVR realized it with an accuracy for NNW and CART higher than 97% and for SVR slightly lower than 97%. By testing images of the jet mixer, the prediction accuracy compared with the CFD results of NNW and CART was also higher than 97%, although that for SVR was relatively lower, and insignificant declines in accuracy were observed on comparing the results with mixture sampling experiments. CONCLUSION: PCA facilitates evaluations of CFD-referenced PIMU using image-based ML. Models trained by enhanced image sets of the long-mixing tube have satisfactory performance. NNW and CART performed slightly better than SVR, and they can be used as tools to improve the rationality when evaluating PIMU in DNIS. © 2022 Society of Chemical Industry.


Assuntos
Praguicidas , Aprendizado de Máquina , Simulação por Computador , Hidrodinâmica , Redes Neurais de Computação
9.
Fish Shellfish Immunol ; 127: 1001-1011, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35870745

RESUMO

Aeromonas caviae is a zoonotic pathogen that can cause disease in aquatic organisms and mammals, including humans, and it is widespread in nature, especially in freshwater environments. Previous research has reported that extracellular products (ECPs) secreted by pathogens during growth are effective protective antigens that can induce the host immune response and protect the host from pathogens. However, little is known about how ECPs enhance immunity. Here, we prepared extracellular products by the cellophane plate method, determined the total protein concentration, and analysed the protein composition of the extracellular products by SDS-PAGE. Subsequently, their enzyme activity and pathogenicity were evaluated separately. Crucian carp were randomly divided into four groups to receive formalin-inactivated A. caviae vaccine (FKC), ECPs mixed with the same amount of Freund's complete adjuvant, the same amount of ECPs mixed with an equal volume of A. caviae inactivated vaccine (FKC + ECPs), sterile PBS alone via intraperitoneal injection. On Days 7, 14, 21, and 28 after immunization, the expression levels of IgM, SOD, and CAT and the lysozyme (LYS) activity in the serum were detected by ELISA, and the relative expression levels of the TNF-α, IFN-γ, IL-1ß, and IL-10 genes in the liver, kidney, spleen, intestine, and gills were measured by qPCR. The extracellular products generated five clearly visible protein bands and exhibited lipase, protease, amylase, DNase and lysozyme but no urease or lecithinase activities. In addition, the median lethal doses of A. caviae and ECPs to crucian carp were 411.64 µg/fish and 1.6 × 105 CFU/mL, respectively. Compared with those of the control group, the IgM, SOD, and CAT contents and serum LYS activity were significantly increased in the experimental groups, and the qRT-PCR results showed that the relative expression levels of TNF-α, IFN-γ, IL-1ß, and IL-10 genes in the liver, kidney, spleen, and intestine were significantly increased after injection immunization. In addition, the relative immune protection rates of the three experimental groups were 60%, 65%, and 45%, all of which were significantly higher than those of the control group. Collectively, our findings show that the extracellular products of A. caviae can be used as a vaccine to significantly improve the immune level of crucian carp and have obvious anti-infection ability. This may represent a promising approach to prevent and control infection by A. caviae and provides strong theoretical support for the development of new inactivated vaccines.


Assuntos
Aeromonas caviae , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Imunoglobulina M , Interleucina-10 , Mamíferos , Muramidase , Superóxido Dismutase , Fator de Necrose Tumoral alfa , Vacinas de Produtos Inativados
10.
Oxid Med Cell Longev ; 2022: 2501279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132346

RESUMO

Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1ß and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.


Assuntos
Caspases/metabolismo , Doenças Transmissíveis/imunologia , Imunidade Inata , Inflamassomos/metabolismo , Piroptose/imunologia , Transdução de Sinais/imunologia , Alarminas/metabolismo , Animais , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , RNA Longo não Codificante/metabolismo
11.
J Fish Dis ; 45(2): 231-247, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34875118

RESUMO

Aeromonas veronii (A. veronii) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Based on our previous studies on proteomics and genomics, we found out that the aodp gene may be related to the virulence of A. veronii TH0426. However, aodp gene encodes a hypothetical protein with an unknown function, and its role in A. veronii TH0426 is not clear. Here, we first constructed a mutant strain (△-aodp) to investigate the functional role of aodp in A. veronii TH0426. Compared with the wild strain A. veronii TH0426, the growth rate of strain △-aodp was slower and was resistant to neomycin and kanamycin, but sensitive to cephalexin. The swimming and swarming ability of △-aodp strain decreased, and the pathogenicity to mice decreased by 15.84-fold. Besides, the activity of caspase-3 in EPCs infected with △-aodp strain was 1.49-fold lower than that of the wild strain. We examined 20 factors closely related to A. veronii virulence, among them 17 genes were down-regulated as a result of aodp deficiency. This study laid a foundation for further studies on the pathogenesis of A. veronii.


Assuntos
Aeromonas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Doenças dos Roedores , Aeromonas/genética , Aeromonas veronii/genética , Animais , Infecções por Bactérias Gram-Negativas/veterinária , Camundongos , Virulência , Fatores de Virulência/genética , Peixe-Zebra
12.
Fish Shellfish Immunol ; 120: 658-673, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34500055

RESUMO

The purpose of the current study was to explore the immunomodulatory effects of different adjuvants combined with inactivated vaccines under Aeromonas veronii TH0426 infection in crucian carp. This study explored the best conditions for A. veronii as an inactivated vaccine, and included an animal safety test. Furthermore, we expressed the flagellin FlaA of the A. veronii TH0426 strain for use as an adjuvant supplemented in the diet. Crucian carp were fed 12 different experimental diets for 35 days, including the administration of 10 different adjuvants and inactivated vaccine combinations (50% aluminum hydroxide gel and inactivated vaccine combination, and inactivated vaccine with 20%, 30%, or 50% glucan, astragalus polysaccharide or flagellin), inactivated vaccine alone, and PBS control without adjuvant and inactivated vaccine. After the 42 day feeding trials, the fish were challenged with A. veronii TH0426, and the survival rate over 14 days was recorded. In addition, flagellin FlaA can be expressed normally in large amounts. All experimental groups produced higher levels of IgM serum titres than the control group in the different feeding cycles. Moreover, the activity of serum ACP, AKP, SOD, and LZM, and the expression of inflammatory factors were significantly increased in the experimental groups compared with the control group. The results of qRT-PCR analysis showed that the transcription levels of the IL-10, IL-1ß, IFN-γ and TNF-α genes in heart, liver, spleen and kidney tissues were significantly enhanced by adjuvant treatment, indicating that the addition of adjuvants can significantly promote the body's inflammatory response. In addition, the phagocytic activity of leukocytes in each adjuvant treated group was significantly enhanced compared to that in the groups without adjuvant. After the A. veronii challenge, the survival rate of all adjuvant-treated groups was significantly higher than that of the control group, and the 50% flagellin adjuvant group had the highest rate of 78.37%. Overall, our findings strongly indicate that adjuvants not only significantly improve the body's immunity, but also exhibit a strong anti-infection ability. Importantly, this work provides a new perspective for the prevention and control of aquaculture diseases.


Assuntos
Adjuvantes Imunológicos , Vacinas Bacterianas/imunologia , Carpas/imunologia , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Adjuvantes Imunológicos/farmacologia , Aeromonas veronii/imunologia , Animais , Resistência à Doença , Doenças dos Peixes/prevenção & controle , Flagelina/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Vacinas de Produtos Inativados
13.
Microb Pathog ; 159: 105134, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34400283

RESUMO

Aeromonas veronii (A. veronii, AV) strains are emerging zoonotic and aquatic pathogens, yet we know very little about their genomics. This study aims to utilize comparative genomics to investigate the intraspecific genetic diversity, differences in virulence factors and evolutionary mechanisms of A. veronii strains from diverse sources and to fundamentally demonstrate their pathogenic mechanisms. We conducted comparative genomics analysis of 39 A. veronii strains from different sources and found that 1993 core genes are shared by these strains and that these shared core genes may be necessary to maintain the basic characteristics of A. veronii. Additionally, phylogenetic relationship analysis based on these shared genes revealed that a distant relationship between the AMC34 strain and the other 38 strains but that, the genetic relationship among the 38 strains is relatively close, indicating that AMC34 may not belong to A. veronii. Furthermore, analysis of shared core genes and average nucleotide identity (ANI) values showed no obvious correlation with the location of A. veronii isolation and genetic relationship. Our research indicates the evolutionary mechanism of A. veronii from different sources and provides new insights for a deeper understanding of its pathogenic mechanism.


Assuntos
Aeromonas , Infecções por Bactérias Gram-Negativas , Aeromonas/genética , Aeromonas veronii/genética , Genômica , Humanos , Filogenia , Fatores de Virulência/genética
14.
Microb Pathog ; 159: 105123, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34364977

RESUMO

Aeromonas veronii is a comorbid pathogen that can infect humans, and animals including various aquatic organisms. In recent years, an increasing number of cases of A. veronii infection has been reported, indicating serious risks. This bacterium not only threatens public health and safety but also causes considerable economic loss in the aquaculture industry. Currently, some understanding of the pathogenic mechanism of A. veronii has been obtained. In this study, we first constructed the A. veronii TH0426 fis gene deletion strain Δfis and the complementation strain C-fis through homologous recombination technology. The results showed that the adhesion and invasion ability of the Δfis strain towards Epithelioma papulosum cyprini (EPC) cells and the cytotoxicity were 3.8-fold and 1.38-fold lower, respectively, than those of the wild-type strain. In the zebrafish infection model, the lethality of the deleted strain is 3-fold that of the wild strain. In addition, the bacterial load of the deletion strain Δfis in crucian carp was significantly lower than the wild-type strain, and the load decreased with time. In summary, deletion of the fis gene led to a decrease in the virulence of A. veronii. Our research results showed that the deletion of the fis gene significantly reduces the virulence and adhesion ability of A. veronii TH0426. Therefore, the fis gene plays a vital role in the pathogenesis of A. veronii TH0426. This preliminary study of the function of the fis gene in A. veronii will help researchers further understand the pathogenic mechanism of A. veronii.


Assuntos
Aeromonas , Carpas , Infecções por Bactérias Gram-Negativas , Aeromonas/genética , Aeromonas veronii/genética , Animais , Aquicultura , Infecções por Bactérias Gram-Negativas/veterinária , Humanos , Virulência , Peixe-Zebra
15.
BMC Microbiol ; 20(1): 76, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245412

RESUMO

BACKGROUND: The inner membrane protein DotU of Aeromonas veronii is an important component of the minimal core conserved membrane proteome required for the formation of an envelope-transmembrane complex. This protein functions in a type VI secretion system (T6SS), and the role of this T6SS during the pathogenic process has not been clearly described. RESULTS: A recombinant A. veronii with a partial disruption of the dotU gene (720 bp of the in-frame sequence) (defined as ∆dotU) was constructed by two conjugate exchanges. We found that the mutant ∆dotU allele can be stably inherited for more than 50 generations. Inactivation of the A. veronii dotU gene resulted in no significant changes in growth or resistance to various environmental changes. However, compared with the wild-type strain colony, the mutant ∆dotU colony had a rough surface morphology. In addition, the biofilm formation ability of the mutant ∆dotU was significantly enhanced by 2.1-fold. Conversely, the deletion of the dotU gene resulted in a significant decrease in pathogenicity and infectivity compared to those of the A. veronii wild-type strain. CONCLUSIONS: Our findings indicated that the dotU gene was an essential participant in the pathogenicity and invasiveness of A. veronii TH0426, which provides a novel perspective on the pathogenesis of TH0426 and lays the foundation for discovering potential T6SS effectors.


Assuntos
Aeromonas veronii/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Mutação , Sistemas de Secreção Tipo VI/genética , Aeromonas veronii/genética , Aeromonas veronii/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Dose Letal Mediana , Virulência , Sequenciamento Completo do Genoma , Peixe-Zebra
16.
Int J Mol Sci ; 21(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877791

RESUMO

Aeromonas veronii is one of the main pathogens causing freshwater fish sepsis and ulcer syndrome. This bacterium has caused serious economic losses in the aquaculture industry worldwide, and it has become an important zoonotic and aquatic agent. However, little is known about the molecular mechanism of pathogenesis of A. veronii. In this study, we first constructed an unmarked mutant strain (ΔpreA) by generating an in-frame deletion of the preA gene, which encodes a periplasmic binding protein, to investigate its role in A. veronii TH0426. Our results showed that the motility and biofilm formation ability of ΔpreA were similar to those of the wild-type strain. However, the adhesion and invasion ability in epithelioma papulosum cyprini (EPC) cells were significantly enhanced (2.0-fold). Furthermore, the median lethal dose (LD50) of ΔpreA was 7.6-fold higher than that of the wild-type strain, which illustrates that the virulence of the mutant was significantly enhanced. This finding is also supported by the cytotoxicity test results, which showed that the toxicity of ΔpreA to EPC cells was enhanced 1.3-fold relative to the wild type. Conversely, tolerance test results showed that oxidative stress resistance of ΔpreA decreased 5.9-fold compared to with the wild-type strain. The results suggest that preA may negatively regulate the virulence of A. veronii TH0426 through the regulation of resistance to oxidative stress. These insights will help to further elucidate the function of preA and understand the pathogenesis of A. veronii.


Assuntos
Aeromonas veronii/patogenicidade , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Aeromonas veronii/genética , Aeromonas veronii/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Carpas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Virulência/genética , Peixe-Zebra
17.
Microb Pathog ; 126: 269-278, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30399439

RESUMO

Aeromonas veronii is a serious pathogen which can infect mammals and aquatic organisms and causes irreparable damage to fish aquaculture. It has been demonstrated that adhesion to host surface and cells is the initial step in bacterial pathogenesis. Previous study found that bacterial weaken motility probably caused by the absence of flagellar related genes. In this study, we generated the aha deletion and complementary strains and found that two strains can be stably inherited for more than 50 generations. No significant change was found in the growth of mutant △aha. But the ability of biofilm formation, the adhesion and invasion to EPC cells significantly decreased for 3.7-fold and 2.3-fold respectively. Due to aha gene deletion, the stability of A. veronii flagellar was severely declined and the mutant △aha with no mobility. Compared with the wild-type TH0426, the pathogenicity of A. veroniiaha-deleted strain to zebrafish and mice reduced significantly and virulence attenuated severely. Cytotoxicity experiment also proved that mutant △aha showed much weaker virulence at the same time infection. The consequences declared that the stability of flagellar decreased severely with porin missing and lost the motility. Porin regulated by aha gene is essential for the adhesion and virulence of A. veronii. Thence, the mutant △aha of A. veronii provides an important tool for further concentration on the pathogenic mechanism of A. veronii.


Assuntos
Aeromonas veronii/metabolismo , Aderência Bacteriana , Infecções por Bactérias Gram-Negativas/microbiologia , Porinas/genética , Porinas/metabolismo , Aeromonas veronii/genética , Aeromonas veronii/crescimento & desenvolvimento , Aeromonas veronii/patogenicidade , Animais , Biofilmes/crescimento & desenvolvimento , Doenças dos Peixes/microbiologia , Flagelos , Deleção de Genes , Infecções por Bactérias Gram-Negativas/veterinária , Camundongos , Virulência/genética , Peixe-Zebra/microbiologia
18.
Front Microbiol ; 7: 1228, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588015

RESUMO

Aeromonas veronii is a pathogenic gram-negative bacterium, which infects a variety of animals and results in mass mortality. The stalled-ribosome rescues are reported to ensure viability and virulence under stress conditions, of which primarily include trans-translation and alternative ribosome-rescue factor A (ArfA) in A. veronii. For identification of specific peptides that interact and inhibit the stalled-ribosome rescues, peptide aptamer library (pTRG-SN-peptides) was constructed using pTRG as vector and Staphylococcus aureus nuclease (SN) as scaffold protein, in which 16 random amino acids were introduced to form an exposed surface loop. In the meantime both Small Protein B (SmpB) which acts as one of the key components in trans-translation, and ArfA were inserted to pBT to constitute pBT-SmpB and pBT-ArfA, respectively. The peptide aptamer PA-2 was selected from pTRG-SN-peptides by bacterial two-hybrid system (B2H) employing pBT-SmpB or pBT-ArfA as baits. The conserved sites G133K134 and D138K139R140 of C-terminal SmpB were identified by interacting with N-terminal SN, and concurrently the residue K62 of ArfA was recognized by interacting with the surface loop of the specific peptide aptamer PA-2. The expression plasmids pN-SN or pN-PA-2, which combined the duplication origin of pRE112 with the neokanamycin promoter expressing SN or PA-2, were created and transformed into A. veronii C4, separately. The engineered A. veronii C4 which endowing SN or PA-2 expression impaired growth capabilities under stress conditions including temperatures, sucrose, glucose, potassium chloride (KCl) and antibiotics, and the stress-related genes rpoS and nhaP were down-regulated significantly by Quantitative Real-time PCR (qRT-PCR) when treating in 2.0% KCl. Thus, the engineered A. veronii C4 conferring PA-2 expression might be potentially attenuated vaccine, and also the peptide aptamer PA-2 could develop as anti-microbial drugs targeted to the ribosome rescued factors in A. veronii.

19.
Front Microbiol ; 6: 579, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136727

RESUMO

Earlier studies reveal that Small protein B (SmpB), a class of well-conserved tmRNA-binding proteins, is essential for the trans-translation process, which functions as a system for translation surveillance and ribosome rescue. Here, we report a previously unrecognized mechanism by which SmpB alone positively regulates the expression of a sensor kinase, BvgS, in Aeromonas veronii. A reporter plasmid was constructed in which the promoter of bvgS was used to control the expression of the enhanced green fluorescent protein (eGFP) gene. When the reporter plasmid was co-transformed with a SmpB expression construct into E. coli, the relative fluorescence intensity increased about threefold. Transformation with a truncated form of smpB gene showed that the C-terminus had little effect, while N-terminus unexpectedly increased eGFP production. Next, a series of SmpB mutants were generated by site-directed mutagenesis. When the mutants SmpB (G11S) or SmpB (E32AG) was used in the experiment, eGFP expression dropped significantly compared with that of wild type SmpB. Further, purified SmpB was shown to bind the promoter regions of bvgS in the agarose gel retardation assay. Quantitative RT-PCR analysis showed that eGFP transcript levels increased approximately 25-fold in the presence of SmpB. Likewise, smpB knockout decreased bvgS transcripts significantly in A. veronii, and also displayed a reduced capability in salt tolerance. Collectively, the data presented here will facilitate a deeper understanding of SmpB-mediated regulatory circuits as a transcriptional factor in A. veronii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...